
Math 375

David Ng

Fall 2016

Contents

1 September 12, 2016 4
1.1 Review of Differential Equations . . . . . . . . . . . . . . . . . . . . 4

2 September 14, 2016 5
2.1 General Differential Equations Cont’d . . . . . . . . . . . . . . . . . 5
2.2 Linear and Non-Linear Differential Equations . . . . . . . . . . . . . 5
2.3 First Order Linear Equations . . . . . . . . . . . . . . . . . . . . . . 6

3 September 16, 2016 7
3.1 First Order Linear Equations Cont’d . . . . . . . . . . . . . . . . . . 7

4 September 19, 2016 9
4.1 First Order Separable Equations . . . . . . . . . . . . . . . . . . . . 9
4.2 Types of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 First Order Exact Equations . . . . . . . . . . . . . . . . . . . . . . 10

5 September 21, 2016 12
5.1 Types of First Order Differential Equations . . . . . . . . . . . . . . 12
5.2 Bernoulli Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 September 23, 2016 14
6.1 Homogeneous Equations Cont’d . . . . . . . . . . . . . . . . . . . . . 14
6.2 Integrating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 September 26, 2016 18
7.1 Exponential Growth and Decay . . . . . . . . . . . . . . . . . . . . . 18
7.2 Newton’s Law of Cooling/Heating . . . . . . . . . . . . . . . . . . . 19

8 September 28, 2016 22
8.1 Mixing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 Electric Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



Differential Equations 2

9 September 30, 2016 24
9.1 Electric Circuits Cont’d . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.2 Second Order Linear Ordinary Differential Equations . . . . . . . . . 25

10 October 3, 2016 26
10.1 October 5, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.2 Second Order Linear Ordinary Differential Equations Cont’d . . . . 29
10.3 Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10.4 Equations with Constant Coefficients . . . . . . . . . . . . . . . . . . 32

11 October 7, 2016 33
11.1 Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12 October 12, 2016 35
12.1 Higher Order Linear Ordinary Differential Equations . . . . . . . . . 35
12.2 Higher Order Differential Equations . . . . . . . . . . . . . . . . . . 36

13 October 14, 2016 38
13.1 Higher Order Linear Differential Equations with Constant Coefficients 38
13.2 The Method of Undetermined Coefficients . . . . . . . . . . . . . . . 39
13.3 Summary of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14 October 17, 2016 40
14.1 Undetermined Coefficients Method Cont’d . . . . . . . . . . . . . . . 40
14.2 Summary of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 41

15 October 19, 2016 43
15.1 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 43

16 October 21 , 2016 44
16.1 Introduction and Properties of Laplace Transform . . . . . . . . . . 44
16.2 Properties of Laplace Transform . . . . . . . . . . . . . . . . . . . . 45

17 October 24, 2016 46
17.1 The Laplace Transform Cont’d . . . . . . . . . . . . . . . . . . . . . 46

18 October 26, 2016 49
18.1 Midterm Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

19 October 31, 2016 50
19.1 The Laplace Transform Cont’d . . . . . . . . . . . . . . . . . . . . . 50
19.2 The Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . 51



Differential Equations 3

20 November 2, 2016 52
20.1 Inverse Laplace Transform Cont’d . . . . . . . . . . . . . . . . . . . 52
20.2 Differential Equations with the Laplace Transform . . . . . . . . . . 53

21 November 4, 2016 54
21.1 Problems of Inverse Laplace Transform . . . . . . . . . . . . . . . . . 54
21.2 Systems of Linear Ordinary Differential Equations . . . . . . . . . . 54

22 November 7, 2016 56
22.1 Systems of Linear Differential Equations Cont’d . . . . . . . . . . . . 56

23 November 9, 2016 58
23.1 Systems of Linear Homogeneous Ordinary Differential Equations . . 58

24 November 25, 2016 60
24.1 Sturn-Liouville Problems Cont’d . . . . . . . . . . . . . . . . . . . . 60

25 Separation of Variables Cont’d 63

26 November 30, 2016 65
26.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

27 Paragraph 67

28 Math 67
28.1 Using alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

29 Shortcuts 68

30 Theorems and Proofs 68

31 Referencing 69

32 Numbered and Bulleted Lists 69



Differential Equations 4

1 September 12, 2016

1.1 Review of Differential Equations

Definition. A differential equation is an equation connecting an unknown func-
tion with some of its derivatives. A function that turns an equation into an identity
is a solution of the given differential equation. A differential equation includes de-
pendent and independent variables.

Example. Suppose we are given the equation y = f(x). What are the dependent
and independent variables?

In the above equation, x is independent while y is dependent.

Example. Given that N = N(t) is the population size, and r is a positive constant,
find the solution to the differential equation

dN

dt
= rN

We note that the function N(t) = Cert is a solution, since

dN

dt
= Crert = r

(
Cert

)
= rN

Example. Solve the differential equation d2y
dt2

= −g, where g is the gravitational
constant.

To solve this, we need to determine the solution to y(t). Let us integrate to
arrive at the solution.

y′(t) = v(t)

=

∫
y′′(t)dt

=

∫
(−g)dt

= −gt+ C1

y(t) =

∫
y′(t)dt

=

∫
v(t)

=

∫
(−gt+ C1) dt

= −gt
2

2
+ C1t+ C2
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Generally, a differential equation has an infinite number of solutions. The process
of determining the solution is referred to as integration. The number of constants
is equal to the order of the equation (which is the highest order of the derivative
involved. A collection of solutions is called the general solution. In order to find a
particular solution, we have to introduce initial conditions.

Example. Given the initial conditions y(0) = 15m, and v(0) = 0.5m/s, solve the

differential equation d2y
dt2

= −g, where g is the gravitational constant.

We note that we solve for the constant values given the initial conditions. We
get that C1 = 0.5 and C2 = 1.5. Thus, the particular solution is

y = −gt
2

2
+
t

2
+ 1.5

Example. Classify the following equations

es
d3u

ds3
= sin(s5)

du

ds
− s5 ln(s4 + s2 + 1)

(
du

ds

)2

+ 5u = s+ 7

The first equation is a third-order linear equation, while the second equation is
nonlinear.

2 September 14, 2016

2.1 General Differential Equations Cont’d

An ordinary nth order differential equation is of the form

y(n) = f
(
x, y, y′, ..., y(n−1)

)
We introduce initial conditions as follows,

y(x0) = y0, y
′(x0) = y′0, ..., y

(n−1)(x0) = y
(n−1)
0

By introducing initial conditions, we get the initial value problem.

2.2 Linear and Non-Linear Differential Equations

Definition. A linear differential equation is of the form

y(n) = an−1(x)y(n−1) + ...+ a0(x)y +B(x)

Example. Classify the equation ∂u
∂t = k ∂

2u
∂x2

.
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We note that this is the heat transfer equation with u(t, x). This is a linear
partial differential equation.

Remark. First order differential equations can also be written in a differential form.

Example. Newton’s law of cooling/heating states that dT
dt = −k(T−Tmedium), where

T (t) is the temperature. We note that the right hand side does not depend on t. Such
equations of the form y′ = g(y) are called autonomous. Classify this differential
equation.

We note that we can rewrite the equation as

dT = −k(T − Tmedium)dt

This is a first order ordinary differential equation.

2.3 First Order Linear Equations

First order linear differential equations are of the form,

y′(t) = p(t)y(t) = q(t)

Remark. We note that for (µ(t)y(t))′ = µy′ + µ′y, we denote µ(t) = e
∫
p(t)dt as the

integrating factor

We recall that

d

dt

(
e
∫
p(t)dt

)
= e

∫
p(t)dt d

dt

(∫
p(t)dt

)
= p(t)e

∫
p(t)dt

Here, we multiply the equation y′(t) = p(t)y(t) = q(t) by µ(t). Thus, we get

e
∫
p(t)dty′(t) + p(t)e

∫
p(t)dty(t) = q(t)e

∫
p(t)dt

µy′(t) + µ(t)y(t) = q(t)e
∫
p(t)dt

=
d

dt

(
e
∫
p(t)d(t)y(t)

)
However, we note that ep(t)dty(t) =

∫
q(t)e

∫
p(t)dt + C. Thus,

y(t) = Ce−
∫
p(t)dt + e−

∫
p(t)dt

∫
q(t)e

∫
p(t)dtdt

Example. Solve
xy′ + 3y − x2 = 0
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First, we rewrite the equation in standard form. That is, the equation becomes
y′ + 3

xy = x. We now identify p(t) from the general form, which in this case is
(
3
x

)
.

Thus, we note that the integrating factor is

µ(x) = e
∫

3
x
dx

= e3 ln(x)

=
(
eln(x)

)3
= x3

Now, we multiply the original equation y′ + 3
xy = x by x3 to get the equation

x3y′ + 3x2y = x4

d

dx
x3y = x4

x3y =

∫
x4dx

=
x5

5
+ C

Thus, we now isolate y to get it in its explicit form

y =
x2

5
+
C

x3

3 September 16, 2016

3.1 First Order Linear Equations Cont’d

Example. Solve the initial value problem given that y(0) = 4 for the following
equation,

cos(t)y′ = y sin(t) + cos2(t)

To solve this equation, we rewrite the equation as y′+p(t)y = q(t). The equation
becomes y′− tan(t)y = cos(t). We now find the integrating factor, which is e

∫
p(t)dt,

e−
∫
tan(t)dt = eln(cos(t))

= cos(t)

We now multiply the equation y′ − tan(t)y = cos(t) to get cos(t)y′ − sin(t)y =
cos2(t). We note the left hand side of the equation becomes (cos(t)y)′ = cos2(t).
Thus by taking the integral of both sides, cos(t)y =

∫
cos2(t)dt.
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cos(t)y =

∫
cos2(t)dt

=

∫
1 + cos(2t)

2
dt

=
1

2
t+

sin(2t)

4
+ C

y =
t

2 cos(t)
+

2 sin(t) cos(t)

4 cos(t)
+

C

cos(t)

=
t

2 cos(t)
+

sin(t)

2
+

C

cos(t)

With y(0) = 4, we find by substituting into the equation that C = 4. Thus,

y =
t

2 cos(t)
+

sin(t)

2
+

4

cos(t)

Theorem. If the coefficients p and q of the equation y′ + p(t)y = q(t) are defined
and continuous on an interval (a, b)including t0, then the solution of y′+p(t)y = q(t)
with the initial condition y(t0) = y0 exists on (a, b) and is unique.

Example. Find the interval on which the solution of the equation
(
t2 − 9

)
y′+ln(t+

7)y = cos(3t) is guaranteed to have a unique solution if y(0) = 5 and y(−5) = 2.

We first note that p(t) = ln(t+7)
t2−9 and q(t) = cos(3t)

t2−9 . From t2 − 9, we note that
t 6= ±3. Additionally, ln(t + 7) means that t + 7 > 0, so t > −7. Therefore, the
domain is {t| − 7 < t < −3,−3 < t < 3, 3 < t}.

Definition. An equation of the form dy
dx = f(x)g(y) is separable since we can

separate x and y.

To solve the equation, we would rewrite the equation as dy
g(y) = f(x)dx. Then

integrate both sides.

Example. Given that y(1) = 1 or y(1) = −2, solve

y′ = −x
y

We note that we can rewrite as dy
dx = −x

y . That is, ydy = −xdx. Integrating
both sides, we get
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∫
ydy =

∫
xdx

y2

2
= −x

2

2
+ C1

y2 = 2C1 − x2

y = ±
√
C − x2

Given that y(1) = 1, we note that C = 2, so y =
√

2− x2 exists on (−
√

2,
√

2).
For y(1) = −2, we find that C = 5. Thus, y = −

√
5− x2 exists on the interval

(−
√

5,
√

5).

4 September 19, 2016

4.1 First Order Separable Equations

There may be situations where it is difficult to express y = y(x).

Remark. We note that if we simplify x2 = x to x = 1, we have lost a solution at
x = 0.

Example. Find the general solution of

dy

dx

(
1 + x2

)
=

1

2

(
y2 − 1

)
We separate x and y. The equation becomes

dy

y2 − 1
=

dx

1 + x2

We note that we divided by 1 + x2 and y2 − 1. We find that y = ±1 is a solution.
We now take the integral of both sides to get∫

dy

y2 − 1
=

∫
dx

1 + x2

We employ partial fraction to get

2

(y − 1)(y + 1)
=

A

y − 1
+

B

y + 1

Solving for A and B using y = ±1, we get A = 1 and B = −1. Thus, the integral
becomes
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∫
dy

y − 1
−
∫

dy

y + 1
=

∫
dx

1 + x2

ln(y − 1)− ln(y + 1) = arctan(x) + C1

ln(y − 1)

ln(y + 1)
= C1 + arctan(x)

|y − 1|
|y + 1|

= eC1earctan(x)

y − 1

y + 1
= ±C2e

arctan(x)

We note that for C = 0, y = 1.

y − 1

y + 1
= Cearctan(x)

y − 1 = yCearctan(x) + Cearctan(x)

y
(

1− Cearctan(x)
)

= 1 + Cearctan(x)

y =
1 + Cearctan(x)

1− Cearctan(x)

We note that this is the general solution, whereas y = −1 is a singular solution.

4.2 Types of Equations

1. Linear equations are of the form (µ(t)y(t))′ = f(t)

2. Separable equations are of the form y′(t) = f(t)g(y)

Let us suppose that we have a solution F (x, y) = C and a differential equation
d
dxF (x, y) = 0.

4.3 First Order Exact Equations

Definition. An equation of the form µ(x, y)dx+N(x, y)dy = 0 is exact if µy = Nx.
We find the potential function F (x, y) such that µ = Fx = ∂F

∂x , and N = Fy. The
general solution if F (x, y) = C.

Example. Find the general solution of(
2xy + 3y2

) dy

dx
+ y2 + cos(x) = 0
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We write the equation in the differential form. That is(
y2 + cos(x)

)
dx+

(
2xy + 3y2

)
dy = 0

We now determine if this is exact. µy = d
dy

(
y2 cos(x)

)
= 2y. Nx = d

dx

(
2xy + 2y2

)
=

2y. We note that 2y = 2y. Hence, it is exact.

∂F

∂x
= M

= y2 + cos(x)

F (x, y) =

∫ (
y2 + cos(x)

)
dx

= y2x+ sin(x) + k(y)

∂F

∂y
= 2yx+ 0 + k′(y)

= N

= 2xy + 3y2

Since k′(y) = 3y2, we get that k(y) = y3. Thus, F (x, y) = y2x + sin(x) + y3.
The general solution is therefore

xy2 + sin(x) + y3 = C

Example. Solve

(y cos(x) + 2xey) dx+
(
sin(x) + x2ey − 1

)
dy = 0

Firs, we note that this is an exact equation.

1. My = cos(x) + 2xey

2. Nx = cos(x) + 2xey

Now, we have F =
∫
Mdx = y sin(x) + x2ey + k(y). Fy = sin(x) + x2ey + k′(y),

where k′(y) = −1. Thus, k(y) = −t. F (x, y) = y sin(x) + x2ey − y. The general
solution is therefore

y sin(x) + x2ey − y = C
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5 September 21, 2016

5.1 Types of First Order Differential Equations

Example. For which a and b will

ax3y2 + 6xbyy′ = 0

be exact?

We can rewrite y′ as dy
dx . We can then rewrite the equation as

ax3y2dx+ 6xbydy = 0

where M is the term before dx and N is the term before dy. Thus, My = 2ax3y,
and Nx = 6bxb−1y. Since we know that My = Nx, then we get a = 12 and b = 4.

5.2 Bernoulli Equations

Definition. A Bernoulli equation is of the form

dy

dt
+ p(t)y = q(t)yn

where n 6= 0, 1.

We note that we can manipulate this equation by dividing by yn to get

y′

yn
= p(t)y1−n = q(t)

We denote z = y1−n to get

dz

dt
= (1− n)

(
y−ny′

)
The equation therefore becomes

1

1− n
z′ + pz = q

Example. Solve
y′ + y + xy2 = 0

We first divide by y2 to get the equation in the appropriate form. The result
is y′

y2
+ 1

y = −x. In this case, z = 1
y . Thus, z′ = − 1

y2
y′. By substituting into the

equation, we get
z′ − z = x
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We now multiply by the integrating factor, e−
∫
dx = e−x. The integral becomes

the following, to which we apply integration by parts.

e−xz =

∫
xe−xdx

= −xe−x +

∫
e−xdx

= −xe−x − e−x + C

exe−xz = ex
(
−xe−x − e−x + C

)
z = Cex − x− 1

Since z = 1
y , substituting back, we get

y = (Cex − x− 1)−1

Example. Solve

ty′ + y =
10t2 + 3

y2

We multiply both sides by y2 to get

ty′y2 + y3 = 10t2 + 3

We let z = y2, and thus z′ = 3y2y′. The equation becomes

1

3
tz′ + z = 10t2 + 3

At this point, we solve through use of integrating factor. That is, the equation
becomes the following after determining the integrating factor e

∫
3
t
dt = t3

z′ +
3

t
z = 30t+

9

t
t3z′ + 3t2z = 30t4 + 9t2

t3z =

∫ (
30t4 + 9t2

)
dt

= 6t5 + 3t3 + C

z = 6t2 + 3 +
C

t3

We now substitute y back into the equation to get

y =

(
3 + 6t2 +

C

t3

) 1
3
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5.3 Homogeneous Equations

Definition. A homogeneous equation is of the form

dy

dx
= f

(y
x

)
Remark. If all the terms have the same degree, then the following ratio of two
polynomials holds

p(x, y)

q(x, y)
= f

(y
x

)
To solve, we denote u = y

x , so that y = ux and y′ = u′x + u. We note that
y′x+ u = f(u). Therefore, we have the following separable equation

x
du

dx
= f(u)− u∫

du

f(u)− u
=

∫
dx

x

Example. Solve

y′ =
y

x
+ tan

(y
x

)
We denote u = y

x . Doing so, we get that y = xu and y′ = u+ xu′. Thus, we get
the equation u+ xu′ = u+ tan(u). Separating this equation, we get

x
du

dx
= tan(u)

=
sin(u)

cos(u)∫
cos(u)

sin(u)
du =

∫
dx

x

= ln(x) + C2

ln(sin(u)) = ln(x) + ln(C3)

= ln(C3x)

At this point, we note that C3 > 0 or C3 < 0. Also, C3 is included as well. Thus,
we have sin(u) = ±C3x. Substituting, we get that sin

( y
x

)
= ±C3x.

6 September 23, 2016

6.1 Homogeneous Equations Cont’d

Example. Given that y(1) = 0, solve the following equation
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(x− y)y′ + x+ y = 0

We note that by rearranging the equation, we get

y′ = −x+ y

x− y

=
x+ y

y − x

=
1 + y

x
y
x − 1

= f
(y
x

)
We now let u = y

x . Thus, y = xu and y′ = u + xu′. Substituting into the
equation, we get

u+ xu′ =
1 + u

u− 1

xu′ =
1 + u

u− 1
− u

x
du

dx
=
−u2 + 2u+ 1

u− 1

Taking the integral of both sides, we get

∫
(u− 1)du

1 + 2u− u2
=

∫
dx

x

We note here that the derivative of 1+2u+u2 is 2−2u. We make the substitution
to let w = 1 + 2u− u2, and dw = −2(u− 1)du. Solving this, we get

ln
(
1 + 2u− u2

)
= ln

(
C

x2

)
1 + 2u− u2 =

C

x2

By substituting u = y
x , we find that the general solution is
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x2 + 2xy − y2 = C

. We note that y(1) = 0, so
x2 + 2xy − y2 = 1

is a particular solution.

6.2 Integrating Factor

If M(x, y)dx+N(x, y)dy = 0 is not exact, we can sometimes find M(x, y) such that
µMdx + µNdy is exact. When do we have µ(x)? But we know that µ(x)Mdx +
µ(x)Ndy = 0 is exact, so

∂

∂y
(µM) = µMy

=
∂

∂x
(µ(x)N)

= µ′N + µNx

= µ′N

Thus, we have

µ′N = µ(My −Nx)

or

µ′

µ
=
My −Nx

N

If
My−Nx

N does not depend on y, we have an integrating factor, since

(ln(µ))′ =
My −Nx

N

ln(µ) =

∫
My −Nx

N

µ(x) = e
My−Nx

N
dx

Similarly, we have µ = µ(y) if
Nx−My

M does not depend on x.

Example. Solve (
x+ y2

)
dx− 2xydy = 0

i
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We try the integrating factor µ(x), to get

My −Nx

N
=

2y − (−2y)

−2xy

=
−4y

2xy

= −2

x
µ′

µ
= −2

x

(ln(µ))′ = −2

x

ln(µ) =

∫ (
−2

x

)
dx

= −2 ln(x) + C

= − ln(x2)

= ln

(
1

x2

)
Thus, we get that µ(x) = 1

x2
. Now, by applying this integrating factor, we solve

the original equation.

x+ y2

x2
dx− 2xy

x2
dy = 0(

1

x
+
y2

x2

)
dx− 2

(y
x

)
dy = 0

Thus, we note that

F (x, y) =

∫ (
1

x
+
y2

x2

)
dx = ln(x)− y2

x
+ k(y)

By finding ∂F
∂y = −2 yx + k′(y), we note that k′(y) = 0. Thus, the solution is

F (x, y) = ln(x)− y2

x
= C

Example. Solve
y(1 + xy)dx− xdy = 0
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We note that in this equation, we designate M = y(1 + xy) and N = −x. Thus,
Nx = −1 and My = 1 + 2xy. Therefore,

Nx −My

M
=
−1− 1− 2xy

y(1 + xy)

= −2(1 + xy)

y(1 + xy)

= −2

y

µ′(y)

µ
= −2

y

ln(µ) = −2 ln(y)

Thus, µ(y) = 1
y2

. Using this as the integrating factor, we find that

F (x, y) =
x

y
+
x2

2
= C

Example. Find n and m such that µ(x, y) = xnym is an integrating factor and
solve

(6y + 14x)dx+
(
4x+ 6x2y−1

)
dy = 0

We first multiply the entire equation by xnym to get(
6xnym−1 + 14xn+1ym

)
dx+

(
4xn+1ym + 6xn+2ym−1

)
dy = 0

, where the term before dx is M and the term before dy is N . Finding ∂M
∂y and ∂N

∂x ,
we then solve the system of equations. Doing this, we find that n = 5 and m = 3.
Thus

F (x, y) = x6y4 + 2x7y3 = C

7 September 26, 2016

7.1 Exponential Growth and Decay

The equation that represents exponential growth and decay is

dy

dt
= ky
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For k > 0, this represents such relations as population growth or bank interest.
For k < 0, this represents such relations as radioactive decay. We note that if we
rearrange the equation and take the integral of both sides, we get

ln(y) = kt+ C

Solving for y while noting that y(t0) = y0, we get

y = y0e
k(t−t0)

.

Example. If a capital is doubled in 8 years and the interest k is constant (N ′ =
kN,N > 0), how long will it take for the capital to triple.

We know that in 8 years, the capital doubles. Therefore, this is represented by
the fact that

2 = e8k

Therefore, we note that 8k = ln(2). Thus, k = ln(2)/8. Now, we solve for the
amount of time needed for the capital to double. We note that for the capital to
triple, we need y = 3y0. Combined with out knowledge of k, we get

3 = e
ln(2)t

8

Thus, ln(3) = ln(2)t/8. Solving for t, we get

t =
8 ln(3)

ln(2)

7.2 Newton’s Law of Cooling/Heating

Let T (t) be the temperature of the object, S(t) be the temperature of the medium,
and k be the coefficient. The equation that represents Newton’s Law of Cool-
ing/Heating is

dT

dt
= k(S(t)− T (t))

We can simplify by taking the integrating factor to be µ(t) = ekt,
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dT

dt
+ kT = kS

ekt
dT

dt
+ kektT = kSekt(
ektT

)′
= kS(t)ekt

ektT =

∫
kS(t)ektdt

T = Ce−kt + e−kt
∫
kS(t)ektdt

Example. A metal object is heated to 200◦C degrees Celsius and then placed in
a large room with a constant temperature of 20 degree Celsius to cool. After 10
minutes, the temperature of the object is 100 degrees Celsius. When was it at 140
degrees Celsius. How long will it take to cool to 25 degrees Celsius.

We note that T (0) = 200◦C, and then apply Newton’s law to get

dT

dt
= k(20− T )

This becomes

ektT =

∫
20kektdt

= 20ekt + C

T (t) =
(

20ekt + C
)
e−kt

= 20 + Ce−kt

Since we know that T (0) = 200, we determine that C = 180. Now, we note that
at t = 10, the temperature was 100. Thus, we solve for k to obtain
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T (t) = 20 + 180e−10k

T (10) = 20 + 180e−10k

100 = 20 + 180e−10k

80 = 180e−10k

4

9
= e−10k

ln

(
4

9

)
= −10k

k = − 1

10
ln

(
4

9

)
Now to solve the first question, we note that we need to solve for when T (t) =

140. Thus, substituting into the equation, we get

20 + 180e−kt = 140

e
1
10

ln( 4
9)t =

2

3
1

10
ln

(
4

9

)
t = ln

(
2

3

)
1

10
ln

(
22

32

)
t = ln

(
2

3

)
2

10
ln

(
2

3

)
t = ln

(
2

3

)
1

5
t = 1

t = 5

Thus, after 5 minutes, the metal object is at 140 degrees. To solve the second
problem, we note that we have T (t) = 25. By applying Newton’s law, we get
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20 + 180e−kt = 25

e−kt =
5

180

−kt = ln

(
1

36

)
1

10
ln

(
4

9

)
t = ln

(
1

36

)
t =
− ln(36)
1
10 ln

(
4
9

)
=

10 ln(36)

ln(9)− ln(4)

Thus, it will take around 44186 minutes for the metal object to cool to 25◦C.
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8.1 Mixing Problems

Let Q(t) be the amount of salt at time t, r1 be the incoming rate, r2 be the outgoing
rate, C1 be the incoming concentration, and C2 be the outgoing concentration.
Thus, we note the relation

dQ

dt
= C1r1 − C2r2

We note that C2 = Q
V , where V = V0 + (r1− r2)t. Therefore, the above equation

becomes

dQ

dt
= C1r1 −

Qr2
V0 + (r1 − r2)t

Example. A tank contains 1000L of water with 2kg of salt. A valve is opened so
that water containing 0.02kg of salt per liter flows into the tank at a rate of 5L/min.
The mixture is well stirred and drains from the tank at a rate of 5L/min. Find Q(t),
which is the amount of salt after t minutes. Determine Qc = limt→∞Q(t). When
will Q(t) be 99% of Qc.

We note that r1 = 5L/min and r2 = 5L/min. We also note that C1 = 0.02kg/L
and C2 = Q

V = Q
1000 . Thus we get
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dQ

dt
= C1r1 − c2r2

= 0.02 ∗ 5− 5Q

1000

Q′ +
Q

200
= 0.1

We now find the integrating factor and find that it is e
t

200 to get

Q′e
t

200 +
Q

200
e

t
200 = 0.1e

t
200(

Q(t)e
t

200

)′
= 0.1e

t
200

Q(t)e
t

200 =

∫
0.1e

t
200 dt

= 20e
t

200 + C

Q(t) = 20 + Ce−
t

200

After solving this and noting that Q(0) = 2, we find that C = −18. Therefore

Q(t) = 20− 18e−
t

200

To solve the second question, we note that as t → ∞, the expression Q(t)
approaches 20.

To solve the third question, we note that we solve for when Q(t) = .99∗20 = 19.8.
We find that t = 200 ln(90) minutes, which is approximately 15 hours.

8.2 Electric Circuits

We note the following laws

1. Ohm’s Law states that

ER = VR = RI = R
dQ

dt

2.

VH = H
dI

dt
= EH

3.

Ec = Vc =
Q

c
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4. Kirchoff’s Law states that

E = ER + EL + Ec

5. LR

E = RI +H
dI

dt

6. CR

E =
Q

c
+R

dQ

dt

Example. An energy source with 100V is connected in a series with a 10Ω resistor
and an inductor of 2H. If the switch is closed at t = 0, what is the current I(t)?

We note that substituting the values into the equation, we get

100 = 10I + 2
dI

dt

Thus, by determining the integrating factor, we get

I ′ + 5I = 50(
Ie5t

)′
=

∫
50e5t

Ie5t =

∫
50e5t

= 10e5t + C

I = 10 + Ce−5t

Solving this, we find that I(t) = 10 + Ce−5t. We note that at t = 0, we have
I(0) = 0. Thus, we find that C = −10, so the equation becomes

I(t) = 10
(
1− e−5t

)
9 September 30, 2016

9.1 Electric Circuits Cont’d

Example. An energy source with E = 200e−50t is connected in a series with a 2Ω
resistor and a 0.001farad capacitor. If the initial charge on the capacitor is 0, find
the charge and the current at time t > 0 and the maximal charge.
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We know that E = ER +EC. However, we know that ER = 2I, and EC = Q
0.01 .

Thus

E = 2I +
Q

0.01
= 2Q′ + 100Q

200e−50t = 2Q′ + 100Q

100e−50t = Q′ + 500Q

Q′e50t + 50Qe50t = 100e−50te50t

Qe50t =

∫
100

= 100t+ C

Q(t) = (100t+ C)e−50t

We note that at t = 0, we have C = 0. Therefore, Q(t) = 100te−50t.
I(t) = Q′(t), so it is equal to 100e−50t − 50 ∗ 100te−50t, or alternatively (1 −

50t)100e−50t. I(t) = 0 for 50t− 1, so t = 1
50 . We note that substituting this into Q,

we get

Q

(
1

50

)
= 100 ∗ 1

50
e−50∗

1
50

= 2e−1

=
2

e

Therefore, the charge is around 0.73576 coulombs.

9.2 Second Order Linear Ordinary Differential Equations

d2y

dt2
= q

F = −kx = m
d2x

dt2

y′′(t) + p(t)y′(t) + q(t)y = 0

is the general form of a second order linear homogeneous ordinary differential equa-
tion.
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Remark. If y(t) is a solution of the above equation, then cy is also a solution of the
above equation. If y1 and y2 are solutions, then by solving a system of equations,
we can note that y1 + y2 is also a solution.

Can we write the general solution as y = C1y1 + C2y2?

Definition. The functions y1 and y2 are linearly independent on interval I if
a1y1(t) + a2y2(t) = 0 for any t ∈ I only for a1 = a2 = 0

Example. Are the following functions linearly dependent?

y1(t) = et, y2(t) = e2t, t ∈ (−∞,∞)

y1(t) = ln(t), y2(t) = ln
(
t5
)
, t ∈ (0,∞)

For the first equation, we note that we find

aet + be2t = 0

. Substituting for t = 0 and t = 1, we find that a = −b. Thus, it is
For the second equation, y2 = 5 ln(t) = 5y1. Thus, 5y1 − y2 = 0 for ant t > 0.
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Definition. Functions f1, f2, ..., fn are linearly independent if

a1f1(x) + a2f2(x) + ...+ anfn(x) = 0

for any x ∈ I only for a1 = 0, a2 = 0, ... an = 0. The functions are linearly
dependent if there are a1, a2, ..., an where |a1|+ |a2|+ ...+ |an| > 0 such that the
above relation is equal to zero for any x ∈ I.

Example. Are the following equations linearly independent?

ex, e2x

ln(x), ln
(
x5
)

We note that the first set of equations are linearly independent on R. ln(x) and
ln
(
x5
)

are linearly dependent on (0,∞) since 5 ln(x) + (−1) ln
(
x5
)

= 0.
If x1(t) and x2(t) are solutions to the equation

y′′ + p(t)y′ + q(t)y = 0

then c1x1 + c2x2 is also a solution.

Definition. If x1, x2 are linearly independent solutions of y′′ + p(t)y′ + q(t)y = 0,
they form a fundamental set of solutions.
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Given that
y = c1xz + c2x2

is a solution, then
y′ = c1x

′
1 + c2x

′
2

Can we satisfy any initial set of conditions y(0) = A, y′(0) = B?
That is, the following set of conditions hold

y(0) = c1x1(0) + c2x2(0) = A

y′(0) = c1x
′
1(0) + c2x

′
2(0) = B

We can find a unique {c1, c2} if the determinant is not equal to zero∣∣∣∣X1(0) X2(0)
X ′1(0) X ′2(0)

∣∣∣∣ 6= 0

Definition. Let X1, X2 be functions. Then the above determinant, denoted as
W [X1, X2](t), is call the Wronskian.

If y1 and y2 are linearly dependent, then for any t ∈ I, we have the following
three conditions

a1y1(t) + a2y2(t) = 0

a1y
′
1(t) + a2y

′
2(t) = 0

W [y1, y2](t) = 0

Example. Determine whether the following functions linearly dependent.

e2t, et, t ∈ I

cos(t), sin(t), t ∈ I

We evaluate the Wronskian of each pair of functions to find that

∣∣∣∣ e2t et

2e2t et

∣∣∣∣ = e2t ∗ et − et ∗ 2e2t

= e3t − 2e3t

= −e3t

This is not equal to 0 for any t, so it is linearly independent. For the second set of
functions, we note that
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∣∣∣∣ cos(t) sin(t)
− sin(t) cos(t)

∣∣∣∣ = cos2(t) + sin2(t)

= 1

This is also not equal to 0, so it is also linearly independent.
If we have an initial pointt, we usually choose fundamental solutions satisfying

X1(t0) = 1

X ′1(t0) = 0

X2(t0) = 0

X ′2(t0) = 1

Theorem (Existence and Uniqueness). If p and q are continuous on an open in-
terval i, t0 ∈ I, then for any initial conditions

y(t0) = A

y′(t0) = B

, the initial value problem, concerning y′′ + p(t)y′ + q(t)y = 0, y(t0) = A and
y′(t0) = B, have a unique solution.

Theorem (Superposition Principle). If y1 and y2 are solutions of y′′ + p(t)y′ +
q(t)y = 0, then for any C1, C2 ∈ R

y = C1y1 + C2y2

is a solution of y′′ + p(t)y′ + q(t)y = 0.

Theorem. If the Wronskian of y1 and y2 is nonzero at some point t ∈ I, then y1
and y2 are linearly independent on I.

Theorem (Abel’s Theorem).

W [y1, y2](t) = W (t0)e
−

∫ t
t0
p(s)ds

Proof. We know that
W (t) = y1y

′
2 − y′1y2

and thus

W ′(t) = y′1y
′
2 + y1y

′′
2 − y′′1y2 − y′1y′2

= y1y
′′
2 − y′′1y2
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We now compute

W ′(t) + pW (t) = y1y
′′
2 − y′′1y2 + p

(
y1y
′
2 − y′1y2

)
= y1y

′′
2 − y′′1y2 + py1y

′
2 − py′1y2

= y1
(
y)2′′ + py′2

)
− y2

(
y′′1 + py′1

)
= y1(−qy2)− y2(−qy1)
= −qy1y2 + qy1y2

= 0

This means that both
y′′1 + py′1 + qy1 = 0

y′′2 + py′2 + qy2 = 0

Thus we have

W (t)′ + pW (t) = 0

dW

dt
= −pW∫

dW

W
=

∫
−p(t)dt

ln(W ) = C1 −
∫
p(t)dt

|W | = eC1e−
∫
p(t)dt

W (t) = Ce−
∫
p(t)dt

This if W (t0) is known, we have

W [y1, y2](t) = W (t0)e
−

∫ t
t0
p(s)ds
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10.2 Second Order Linear Ordinary Differential Equations Cont’d

Remark. W [y1, y2](t) is either nonzero for any t, or W (t) = 0.

Example. Find the Wronskian of the Bessel equation given that y1(1) = 3, y′1(1) =
1, y2(1) = 2, and y′2(1) = 2.

x2y′′ + xy′ +
(
x2 − α2

)
y = 0
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First, we note that p(x) = x/x2 = 1/x from the terms in front of the derivatives
of y. We use Abel’s theorem and find that

W (1) =

∣∣∣∣3 2
1 2

∣∣∣∣
= 3 ∗ 2− 2 ∗ 1

= 4

Now, we note that

∫ x

1
p(s)ds =

∫ x

1

1

s
ds

= ln(x)− ln(1)

= ln(x)

Thus, we have

e− ln(x) =
(
eln(x)

)−1
= x−1

=
1

x

Thus

W [y1, y2](x) = W (1) ∗ 1

x

=
4

x

Consider also a non-homogeneous equation

y′′ + p(t)y′ + q(t)y = r(t)

Theorem. If ypart is a particular solution of the above equation, then the general
solution of the above equation is the general solution of y′′ + p(t)y′ + q(t)y = 0 +
ypart. If {y1, y2} is a fundamental set of solutions of y′′ + p(t)y′ + q(t)y = 0, then
the general solution of y′′ + p(t)y′ + q(t)y = r(t) is

y = C1y1 + C2y2 + ypart
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10.3 Reduction of Order

y′′ = −g
If a second order equation includes y′′′ and y′ but not y, the substitution of y′ = u

brings it to a first order equation. If we know a solution of y1 of y′′+p(t)y′+q(t)y = 0,
we can look for the general solution in the form

y(t) = y1(t)z(t)

Substituting, we get an equation in z′′, z′.

Example. Solve the following equation knowing that y1 = t−1 is a solution

t2y′′ + 3ty′ + y = 0

Employing the theorem, we note that y = 1
t z. Thus, y′ = − 1

t2
z + 1

t z
′ and

y′′ = 2
t3
z + 1

t z
′′. Now, we substitute these values into the equation to get

t2y′′ + 3ty′ + y = t2
(

2

t3
z +

1

t
z′′
)

+ 3t

(
− 1

t2
z +

1

t
z′
)

+

(
1

t
z

)
= tz′′ + z′

0 = tz′′ + z

We now make the substituting of u = z′ and u′ = z′′. Thus, we get

t
du

dt
= −u∫

du

u
= −

∫
dt

t

ln(u) = C1 − ln(t)

u = ±eC1
1

t

=
C

t

Now, we substitute back to find z′ and z′′

z(t) =

∫
u(t)dt

=

∫
C

t
dt

= C2 ln(t) + C1

We recall that y(t) = 1
t z. Therefore

y(t) = t−1 (C1 + C2 ln(t))
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10.4 Equations with Constant Coefficients

These equations are of the form

ay′′ + by′ + cy = 0

To solve equations of this form we look for a solution of the form y = ert, y′ = rert

and y′′ = r2ert. The equation becomes

ar2ert + brert + cert = 0

However, we note that ert 6= 0, so we solve the quadratic equation of

ar2 + br + c = 0

This is known as the characteristic equation of ay′′ + by′ + cy = 0.
We note that if b2 − 4ac > 0, and there are two distinct real roots r1 6= r2, then

the general solution of ay′′ + by′ + cy = 0 is

y = C1e
r1t + C2e

r2t

Example. Given y(0) = 7 and y′(0) = −8, solve the initial value problem for the
following equation

y′′ − 2y′ − 8y = 0

We immediately write the characteristic equation to get

r2 − 24− 8 = 0

Solving this equation, we get

r1,2 =
2±
√

22 + 32

2
= 1± 3

Therefore, we denote r1 = −2 and r2 = 4. The general solution is therefore

y = C1e
−2t + C2e

4t

Thus, y′ = −2C1e
−2t + 4C2e

4t. We now substitute the initial values for y(0) and
y′(0) to get that C1 = 6 and C2 = 1. Therefore

y = 6e−2t + e4t
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11.1 Constant Coefficients

Recall the general formula for solving second order ordinary differential equations
with constant coefficients

ay′′ + by′ + cy = 0

If we let y = ert, then this becomes

ar2 + br + c = 0

which is the characteristic equation. We note that there are three cases

1. Case 1, b2 − 4ac > 0: The equation has two real roots where r1 6= r2. The
general solution is

y = C1e
r1t + C2e

r2t

2. Case 2, b2 − 4ac = 0: The equation has two equal roots where r = − b
2a . A

solution is
y1 = ert

Let us use the “reduction of order” method to get

y = ertz(t)

y′ = rertz + ertz′

y′′ = r2ertz + erertz′ + ertz′′

Substituting into ay′′ + by′ + cy = 0, we get

ay′′ + by′ + cy = 0 = a
(
r2ertz + 2rertz′ + ertz′′

)
+ b

(
rertz + ertz′

)
+ certz

= ert
(
ar2z + 2arz′ + az′′ + brz”bz′ + cz

)
= ert

((
ar2 + br + c

)
z + (2ar + b)z′ + az′′

)
= ert

(
(0)z + (0)z′ + az′′

)
Thus, since az′′ = 0, we known that z′′ = 0. Therefore, z = C1 + C2t. The
general equation is

y = ert (C1 + C2t)

3. Case 3, b2 − 4ac < 0: The equation has two complex roots of the form r1,2 =
α+ βi. Specifically, they are

r = − b

2a
±
√

4ac− b2
2a

i
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We employ Euler’s formula to get

y1 = eαt+βit = eαt (cos(βt) + i sin(βt))

y2 = eαt−βit = eαt (cos(βt)− i sin(βt))

We now consider X1 = y1+y2
2 = eαt cos(βt), and X2 = y1−y2

2i = eαt sin(βt),
which form a fundamental set of solutions. The general solution is therefore

y = eαt (C1 cos(βt) + C2 sin(βt))

Example. Find the general solution to

y′′ +−6y′ + 9y = 0

We use the characteristic equation and solve r2 − 6r + 9 = 0 to get

r =
6±
√

62 − 9 ∗ 4

2
=

6± 0

2
= 3

The general solution is therefore

y = (C1 + C2t) e
3t

Example. Solve
y′′ − 6y′ + 10y = 0

We note that the characteristic equation is

r2 − 6r + 10 = 0

Solving for r, we get r = 3± i. Therefore, the general solution is

y = e3t (C1 cos(t) + C2 sin(t))

Remark. We may have an initial value problem with y(t0) = A, y′(t0) = B. A
unique solution exists.

For equations of the form ay′′ + by′ + cy = 0, we may have a bounded value
problem with y(t0) = A, y(t1) = B.

Example. Solve the boundary value problem for the following equations and bound-
aries

y′′ + 4y = 0, y(0) = 0, y
(π

2

)
= 1

y′′ + 4y = 0, y(0) = 0, y
(π

2

)
= 0
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For the first equation and boundaries, we find that the characteristic equation is
r2 + 4 = 0. We note that solving for r, we get r = ±2i. Since there is no real part,
the general solution is therefore

y = C1 cos(2t) + C2 sin(2t)

We now note that substituting the initial values, we obtain

y(0) = C1 cos(0) + C2 ∗ 0 = C1 = 0

y
(π

2

)
= C1 cos(π) + C2 sin(π) = −C1 = 1

Thus, there are no solutions.
For the second equation and boundaries, we substitute the initial values to find

that
y(0) = C1 = 0

y
(π

2

)
= −C1 = 0

We note in this case that C2 can be any value, so the equation becomes

y = C sin(2t)

Thus, there are infinitely many solutions.
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12.1 Higher Order Linear Ordinary Differential Equations

Example. Solve the second order boundary value problem

y′′ − 4y = 0, y(0) = 0, y′
(π

2

)
= 2

We note that the characteristic equation becomes

r2 − 4 = 0

We factor this to find that r = ±2. The general solution is therefore

C1e
2t + C2e

−2t

Thus, substituting the initial values we have y(0) = C1 + C2 = 0 and y′
(
π
2

)
=

C1e
π + C2e

−π = 1. We make use of Cramer’s rule to find

C1 =

∣∣∣∣0 1
1 e−π

∣∣∣∣∣∣∣∣e0 e0

eπ e−π

∣∣∣∣
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C2 =

∣∣∣∣ 1 0
eπ 1

∣∣∣∣∣∣∣∣ 1 1
eπ e−π

∣∣∣∣
It is convenient to use

cosh(kt) =
ekt + e−kt

2

sinh(kt) =
ekt − e−kt

2

We can then re-write the general solution as

y(t) = C1 cosh(2t) + C2 sinh(2t)

Thus, y(0) = C1 ∗ 1 + C2 ∗ 0 = C1 = 0 and y
(
π
2

)
= C2 sinh

(
2 ∗ pi2

)
= 1, so

C2 = 1
sinh(π) .

12.2 Higher Order Differential Equations

We now proceed to consider higher order linear equations. Consider equations of
the form

y(n) + an−1(t)y
(n−1) + ...+ a1(t)y

′ + a0(t)y = 0

where
y(0) = y0, ..., y

(n−1)(0) = y
(n−1)
0

We require the following:

1. If an−1, ..., a1, a0 continuous on an interval I, including the initial point t0 = 0,
then both of the above equations has a unique solution on I.

2. If y1, y2, ..., yk are solutions of the first equation above, then y = C1y1 +
...+ Ckyk is a solution of the first equation above for any choice of C1, ..., Ck
(superposition principle).

3. We define the Wronskian of y1, ..., yn as

W [y1, ..., yn](t) =

∣∣∣∣∣∣∣∣
y1 y2 ... yn
y′1 y′2 ... y′n
... ... ... ...

y
(n−1)
1 y

(n−1)
2 ... y

(n−1)
n

∣∣∣∣∣∣∣∣
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Thus
y(t) = C1y1 + C2y2 + ...+ Cnyn

is the general solution of the first of the above equations if y1, y2, ..., yn are linearly
independent, of W (t) 6= 0. In fact, for solutions of the first equation above, either
W (t) = 0 or W (t) 6= 0 at any t.

Example. Find the linearly independent solutions of

y′′′ + y′ = 0

and show that they are independent.

We use the “reduction of order” and denote y′ = z. Thus, y′′′ = z′′. The
equation now becomes

z′′ + z = 0

The characteristic equation becomes r2 + 1 = 0, so r = ±i. Thus we have z1(t) =
cos(t), z2(t) = sin(t) and z = C1 cos(t) + C2 sin(t). Thus

y(t) =

∫
zdt = C1 sin(t)− C2 cos(t) + C3

We therefore have 1, sin(t), and cos(t) as our three solutions, which we denote y1, y2,
and y3 respectively. To show that they are independent, we note that

W [y1, y2, y3](t) =

∣∣∣∣∣∣
1 sin(t) cos(t)
0 cos(t) − sin(t)
0 − sin(t) − cos(t)

∣∣∣∣∣∣
=

∣∣∣∣ cos(t) − sin(t)
− sin(t) − cos(t)

∣∣∣∣
= − cos2(t)− sin2(t)

= −1 6= 0

Thus, y1, y2, and y3 are linearly independent.
We note that to solve the equation

y(n) + an−1y
(n−1) + ...+ a1y

′ + a0y = 0

we write out and solve the characteristic equation

rn + an−1r
n−1 + ...+ a1r + a0 = 0

Example. Solve
y′′′ − 27y = 0
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We note that the characteristic is r3 − 27 = 0. We note one solution is r1 = 3.
Factoring (r − 3) out of r3 − 27, we get r2 + 3r + 9. We now solve this using
the quadratic equation to determine the complex roots. The quadratic equation
becomes

3±
√

32 − 4 ∗ 9

2

Solving this, we get r2,3 = −3
2 ±

3
√
3

2 i. Thus, the general solution is

y = C1e
3t + e−

3
2
t

(
C2 cos

(
3
√

3

2
t

)
+ C3 sin

(
3
√

3

2
t

))
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13.1 Higher Order Linear Differential Equations with Constant Co-
efficients

We recall that for equations of the form

y(n) + an−1y
(n−1) + ...+ a1y

′ + a0y = 0

we may write out the characteristic equation

rn + an−1r
n−1 + ...+ a1r + a0 = 0

Note that for the characteristic equation, we can have r1 real, r1 = r2 = ... = rk
real, r1 = α± βi and r1 = r2 = α± βi. Their respective solutions are therefore

er1t

er1t, ter1t, ..., tk−1er1t

eαt cos(βt), eαt sin(βt)

eαt cos(βt), eαt sin(βt), teαt cos(βt), teαt sin(βt)

Example. Does there exist a linear homogeneous ordinary differential equation with
constant coefficients which has a solution of

y = t2e3t + te−t

of the fourth order. Of the fifth order?

We note that there are linearly independent solutions of e3t, te3t, t2e3t and e−t, te−t.
Thus, there is none for the fourth order, but there is for the fifth order. Namely,
the equation

(r + 1)2(r − 3)3 = 0
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Example. Solve
y(4) − 3y′′ − 4y = 0

The characteristic equation is r4 − 3r2 − 4 = 0. We make the substitution of
t = r2. Solving the resulting equation, we find that

t =
3±
√

9 + 16

2

Thus, we have t1 = 4, t2 = −1. Thus, we have r = ±2,±i. The general solution is
y = y(x), so

y = C1e
2x + C2e

−2x + C3 cos(x) + C4 sin(x)

We now consider equations of the form

y(n) + an−1y
(n−1) + ...+ a1y

′ + a0y = f(t)

Theorem. A general solution of the above equation is a general solution of y(n) +
an−1y

(n−1) + ... + a1y
′ + a0y = 0 and a particular solution of y(n) + an−1y

(n−1) +
...+ a1y

′ + a0y = f(t).

13.2 The Method of Undetermined Coefficients

Example. Find the general solution of

y′′ + y′ + 2y = 2x2

We first solve the characteristic equation of y′′ + y′ + 2y = 0. Thus, we have
r2 + r + 2 = 0. Solving this, we find that

r =
−1±

√
1− 8

2
= −1

2
±
√

7

2
i

Thus we have

yhomogeneous = e−
x
2

(
C1 cos

(√
7x

2

)
+ C2 sin

(√
7x

2

))

Now, note that yparticular = Ax2 + Bx + C. Thus, y′ = 2Ax + B and y′′ = 2A.
That is, we can equate the following in terms of y′′ + y′ + 2y to obtain

2A+ 2Ax+B + 2
(
Ax2 +Bx+ C

)
= 2x2

We find that A = 1, B = −1, and C = −1
2 . Thus we have

yparticular = x2 − x− 1

2
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The general solution is therefore

y = yhomogeneous + yparticular

= e−
x
2

(
C1 cos

(√
7x

2

)
+ C2 sin

(√
7x

2

))
+ x2 − x− 1

2

13.3 Summary of Solutions

We note that if the right hand side is the following, then the solutions are of the
form:

•
Pn(x)→ Qn(x)

•
sin(βx) or cos(βx)→ A sin(βx) +B cos(βx)

•
Pn(x)ekx → Qn(x)ekx

•

Pn(x)ekx cos(βx) or Pn(x)ekx sin(βx)→ ekx (Qn(x) cos(βx) +Rn(x) sin(βx))

14 October 17, 2016

14.1 Undetermined Coefficients Method Cont’d

Example. Solve
y′′ − 4y′ = 3 cos(t)

We use the characteristic equation to get r2 − 4r = r(r − 4) = 0. That is,
r1,2 = 0, 4. The homogeneous equation is thus given by

yhomogeneous = C1e
0t + C2e

4t

Now, we have yparticular = A cos(t) + B sin(t). Thus, y′ = −A sin(t) + B cos(t) and
y′′ = −A cos(t)−B sin(t). The initial equation is then of the form

y′′ − 4y′ = −A cos(t)−B sin(t) + 4A sin(t)− 4B cos(t) = 3 cos(t)

Separating terms into cos and sin and solving for A,B, we find that A = − 3
17 and

B = −12
17 . The particular solution is therefore

yparticular = − 3

17
cos(t)− 12

17
sin(t)
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The general solution is y = yhomogeneous+yparticular. Therefore, the general solution
is

y = C1 + C2e
4t − 3

17
cos(t)− 12

17
sin(t)

Example. Solve
y′′ − 4y′ = t+ 2

We note that the characteristic equation is the same as the previous example.
Thus, we have

yhomogeneous = C1 + C2e
4t

For the particular solution, if the right hand side is a polynomial Pn(t) and r = 0
is a root of the characteristic equation (s times), we multiply the proposed solution
by ts. In this case, 0 is a root one time, so yparticular = t(At+B) = At2 +Bt. Thus,
y′ = 2At+B and y′′ = 2A. Now, substituting the original equation, we have

y′′ − 4y′ = 2A− 8At− 4B = t+ 2

We now compare the values to solve for A and B. We find that A = −1
8 and

B = − 9
16 . Therefore

y = C1 + C2e
4t + t

(
−1

8
t− 9

16

)
14.2 Summary of Solutions

We note that by applying the undetermined coefficients method, we have the fol-
lowing rules.

1. When the right hand side is of the form

Pn(t)ekt

where r = k is not a solution of the characteristic equation, the proposed
solution is

Qn(t)ekt

2. When the right hand side is of the form

Pn(t)ekt

where r = k is a root s times, the proposed solution is

tsQn(t)ekt

Example. Solve
y′′ + 9y = −18 cos(3t)
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We first determine that the characteristic equation is r2 + 9 = 0. Solving this,
we find that r = ±3i. Therefore the homogeneous solution is

yhomogeneous = C1 cos(3t) + C2 sin(3t)

We now want to find the particular solution. We now multiply the general form
of the particular solution by t once since each r is a solution only once. That is,
we have yparticular = At cos(3t) + Bt sin(3t). Thus, y′ = A cos(3t) − 3At sin(3t) +
B sin(3t)+2Bt cos(3t) and y′′ = −3A sin(3t)−3A sin(3t)−9At cos(3t)+3B cos(3t)+
3B cos(3t)− 9Bt sin(3t). We now substitute after collecting like terms to find that

y′′ + 9y = −6A sin(3t)− 9At cos(3t) + 6B cos(3t)− 9Bt sin(3t) + 9At cos(3t) + 9Bt sin(3t)

= −6A sin(3t) + 6B cos(3t)

= −18 cos(3t)

We now equate the last two expression and find that A = 0 and B = −3. Therefore,
we find that

yparticular = −3t sin(3t)

We now determine the general solution by adding the homogeneous and particular
solutions to get

y = C1 cos(3t) + C2 sin(3t)− 3t sin(3t

Example. Determine which form yparticular should be in for the following three
equations using the undetermined coefficients method.

y(5) − y′ = t cos(t)

y(5) − y′ = e2x + e−x + xex

y(5) − y′ = x3e5x

We determine the characteristic equation to be r5−r = r
(
r4 − 1

)
= r

(
r2 − 1

) (
r2 + 1

)
.

The roots are therefore, r = 0,±1,±i. By apply this, we note that for the first equa-
tion, we have

yparticular = t(A+Bt) cos(t) + t(C +Dt) sin(t)

For the second equation, we note that r2,3 = 1,−1 so we multiply the third and
second term respectively by x (since 1,−1 match the exponents above e) to get

yparticular = Ae2x +Bxe−x + x(Cx+D)ex

For the third equation, we have

yparticular =
(
Ax3 +Bx2 + Cx+D

)
e5x
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15.1 Variation of Parameters

We solve the homogeneous equation

y′′ + p(t)y′ + q(t)y = 0

to find the solution below, where y1, y2 are functions

y = C1y1 + C2y2

We therefore assume that equations of the form

y′′ + p(t)y′ + q(t)y = r(t)

can be solved to find the solution

y = C1(t)y1(t) + C2(t)y2(t)

To find C1(t) and C2(t), we need to solve the system

C ′1y1 + C ′2y2 = 0

C ′1y
′
1 + C ′2y

′
2 = r(t)

In this case, we have

C1(t) = −
∫
r(t)y2(t)

W (t)
dt+ C̄1

C2(t) =

∫
r(t)y1(t)

W (t)
dt+ C̄2

Thus, where y = C1(t)y1(t)+C2(t)y2(t) is the general solution, we have a particular
solution of

yparticular = −y1
∫
ry2
W

dt+ y2

∫
ry2
W

dt

Example. Solve

y′′ + y =
1

sin(t)

The characteristic equation is λ2 + 1 = 0. Solving this, we get λ = ±i. Thus,
we have y1 = cos(t) and y2 = sin(t). Similarly, finding the derivatives we have
y′1 = − sin(t) and y′2 = cos(t). We know that our general solution is of the form

y = C1(t) cos(t) + C2(t) sin(t)

We now solve the system of equations

C ′1y1 + C ′2y2 = 0
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C ′1y
′
1 + C ′2y

′
2 = r(t)

Doing this, we find that C2(t) = ln(sin(t))+ C̄2 and C1(t) = −t+ C̄1. Thus, we have

y = C̄1 cos(t) + C̄2 sin(t)− t cos(t) + sin(t) ln(sin(t))

after substituting C1(t) and C2(t).

Example.
y′′ + 16y = e−t

has a solution satisfying limt→∞ y(t) = 0. Find the solution, y(0), and y′(0).

We note that the characteristic equation is λ2 + 16 = 0. Thus, we have λ = ±4i.
Therefore, we have y1 = cos(4t) and y2 = sin(4t). Our particular solution is of the
form yp = Ae−t and so y′ = −Ae−t and y′′ = Ae−t. Now, we substitute this into
the original equation of y′′ + 16y = e−t to get

Ae−t + 16Ae−t = e−t

Solving this, we get A = 1
17 . Thus, our solution becomes

y = C1 cos(4t) + C2 sin(4t) +
1

17
e−t

We note that this tends towards 0 as t→∞, so C1, C2 = 0. Furthermore, we have
y(0) = 1

17 and y′(0) = − 1
17 .

Example.
y = 4te5t + 7e3t cos(t)

is a solution of
y(4) + ay′′′ + by′′ + cy′ + dy = 0

Find a, b, c, d.

We note that the roots of the characteristic equation

r4 + ar3 + br2 + cr + d = 0

are r1,2 = 5, r3,4 = 3±i. Multiplying this, we find that
(
r2 − 10r + 25

) (
r2 − 6r + 10

)
.
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16.1 Introduction and Properties of Laplace Transform

The Laplace Transform is defined for a piecewise continuous f satisfying |f(t)| ≤
Mebt where M, b > 0. That is, we have

L[f ](s) = F (s) =

∫ ∞
0

e−stf(t)dt
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Example. Evaluate

L[1] =

∫ ∞
−∞

e−stdt

L[1] = lim
A→∞

∫ A

0
e−stdt

= lim
A→∞

(
−1

s
e−st|t=At=0

)

For s > 0, we have L[1] = 1
s .

Example. Evaluate
L[eat]

L[eat] =

∫ ∞
0

e−steatdt

=

∫ ∞
0

e−(s−a)tdt

= − 1

s− a

(
e−(s−a)t − e0

)

For s− a > 0, we have L[eat] = 1
s−a

16.2 Properties of Laplace Transform

1. Linearity states that for constants a, b and functions f, g we have

L[af + bg] = aL[f ] + bL[g]

2.

L[sin(bt)] =
b

s2 + b2
, s > 0

3.
L[cos(bt)] =

s

s2 + b2
, s > 0

4. If f is piecewise continuous and |f(t)| ≤ Mebt, then L[f ](s) is defined for
s > b.

5.

L[f ′(t)] = L

[
d

dt
f

]
= sL[f ]− f(0)
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6. The first differentiation formula is given as

L

[
dn

dtn
f

]
= snL[f ]− sn−1f(0)− ...− sf (n−2)(0)− f (n−1)(0)

7. We use the following to get L[tn],

L[tf(t)] = − d

ds
L[f ](s)

8. The second differentiation formula is given as

L[tnf(t)] = (−1)n
dn

dsn
L[f ](s)

Example. Compute the Laplace Transform of

L[3 cos(2t) + 5e−4t]

= 3L[cos(2t)] + 5L[e−4t]

=
3s

s2 + b2
+

5

s+ 4

Example. Find
L[sin2(t)]

= L

[
1− cos(2t)

2

]
=

1

2
L[1]− 1

2
L[cos(2t)]

=
1

2s
− s

2 (s2 + 4)
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17.1 The Laplace Transform Cont’d

Given that s > 0, we recall the formula of the Laplace Transform

L [f(t)] (s) =

∫ ∞
0

f(t)e−stdt

The following properties hold
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1. Linearity.

2. L[f ](s) exists for s > b if |f(t)| ≤Mebt.

3. L [f ′(t)] (s) = sL[f ]− f(0). (The First Differentiation Formula)

4. L[tf(t)](s) = − d
dsL[f ](s).

5. L
[
eatf(t)

]
= L[f ](s− a) (The First Shift Formula)

6. L
[∫ t

0 f(w)dw
]

(s) = 1
sL[f ](s)

7. L [Ua(t)g(t)] = e−asL [g(t+ a)]

Proof. (Property 4) Let us prove that the integral of both sides is equal. That is,
we have ∫ s

s0

−L[tf(t)](w)dw = L[f ](s)− L[f ](s0)

= −
∫ s

s0

dt

∫ ∞
0

tf(t)e−wtdw

=

∫ ∞
0

dtf(t)

∫ s

s0

−te−wtdw

=

∫ ∞
0

f(t)dt
[
e−wt

]
|w=sw=s0

=

∫
f(t)dt

(
e−st − e−s0t

)
=

∫
f(t)e−stdt−

∫
f(t)e−s0tdt

= L[f ](s)− L[f ](s0)

Example. Solve
L
[
tet
]

We note that this is

L[tet] = − d

ds
L
[
et
]

= − d

ds

(
1

s− 1

)
=

1

(s− 1)2
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Example. Solve
L
[
t3
]

L[t] = − d

ds
L[1] = −

(
1

s

)′
=

1

s2

L
[
t2
]

= − d

ds
L[t] = − d

ds

(
1

s2

)
=

2

s3

L
[
t3
]

= − d

ds
L
[
t2
]

= − d

ds

(
2

s3

)
=

6

s4

Example. Solve
L
[
eat cos(bt)

]
L
[
eat sin(bt)

]
We use the first shift formula to find that the first evaluates to

s− a
(s− a)2 + b2

and the second evaluates to
b

(s− a)2 + b2

Example. Solve

L

[∫ t

0
e8w cos(6w)dw

]
(s)

We apply the sixth property to find that

L

[∫ t

0
e8w cos(6w)dw

]
(s) =

1

s
L
[
e8t cos(6t)

]
=

s− 8

s ((s− 8)2 + 36)

Example. Solve
L
[
e2t
(
t2 − 5t+ 6

)]
We note that this is a shift of 2 for L

[
t2 − 5t+ 6

]
. Thus, we first solve this and

then apply the shift to get

L
[
t2 − 5t+ 6

]
=

2

s3
− 5

s2
+

6

s

L
[
e2t
(
t2 − 5t+ 6

)]
=

2

(s− 2)3
− 5

(s− 2)2
+

6

s− 2
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The Laplace Transform can deal with discontinuous functions. Consider the step
function Ua which is defined as

Ua(t) =

{
0, 0 ≤ t < a

1, t ≥ a

Example. Solve
L[Ua(t)](s)

We note that for s > 0, we have

L[Ua(t)](s) =

∫ ∞
0

Ua(t)e
−stdt

=

∫ a

0
0dt+

∫ ∞
a

1 ∗ e−stdt

= 0− 1

s
e−st|t=∞t=a

= − lim
t→∞

(
1

s
e−st

)
+

1

s
e−as

=
e−as

s
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18.1 Midterm Review

Example. Find y′′ given that

y′ + (2t+ 1)y = 2 cos(t)

and y(0) = 2.

We note that by rearranging the equation, we find that y′(0) = 0 when we
substitute y = 2 at t = 0. We then differentiate the equation to get

y′′ + 2y + (2t+ 1)y′ = −2 sin(t)

We can solve this to find that y′′(0) = −4.

Example. Let ay′′ + by′ + cy = 0 and yparticular = cos(2x). What is the general
solution?

From the particular solution, we note that r = ±2i. Thus,

ygeneral = C1 cos(2x) + C2 sin(2x)

Example. Solve
y′′ + ety′ + y = t3
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19.1 The Laplace Transform Cont’d

Example. Compute ∫ ∞
0

e−3t cos(5t)dt

Traditionally, we would integrate by parts and then compute the improper in-
tegral as a limit. However, we note that we can now solve this more simply using
Laplace Transform. That is, we have

L[f ] = L[f ](s)

=

∫ ∞
0

f(t)e−stdt

= L[cos(5t)](3)

=
s

s2 + 52
|s=3

=
3

32 + 25

=
3

34

Example (Webwork Assignment 3 Question 4). Given that 0 ≤ t ≤ 3, and f(t+3) =
f(t), consider the periodic function

f(t) = 2− e−3t

Sketch and compute its Laplace Transform.

We can first sketch the function in the first specified interval.We note that f(0) =
1 and at t = 3, f(t) approaches 2. This is repeated for each multiple of 3. However,
by applying the shift formula, we obtain∫ 6

3
f(t)e−stdt =

∫ 6

3
f(t− 3)e−s(t−3)−3s

= e−3s
∫ 6

0
f(u)e−sudu

We note that we can therefore obtain an expression for the Laplace Tranform
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L[f ] =

∫ 3

0
f(t)e−stdt+ e−3s

∫ 3

0
f(t)e−stdt+ e−6s

∫ 3

0
f(t)e−stdt+ ...

=
∞∑
n=0

(
e−3s

)n ∫ 3

0
f(t)e−stdt

=
1

1− e−3s

∫ 3

0

(
2− e−3t

)
e−stdt

=
1

1− e−3s

(
2

s
− 2

s
e−3s +

1

3 + s
e−3s−9 − 1

3 + s

)
19.2 The Inverse Laplace Transform

Given the Laplace Transform of a function

F (s) = L[f(t)](s)

the inverse Laplace Transform is given by

f(t) = L−1[F (s)](t)

Example. Find the inverse Laplace Transform of

L−1
[

s

s2 + 16

]
and

L−1
[

s+ 7

s2 + 6s+ 13

]
For the first, we note that it is simply f(t) = cos(4t). For the second, we first

complete the square on the bottom to get

s+ 7

(s+ 3)2 + 22

Now, we need to separate this into a sum to get

s+ 3

(s+ 3)2 + 22
+ 2

2

(s+ 3)2 + 22

We can now express the original function in terms of cos and sin to obtain

e−3t cos(2t) + 2e−3t sin(2t)

Example. Compute

L−1
[

s− 2

s2 − s− 6

]
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We can separate the denominator into (s− 3)(s+ 2). We then solve the partial
fractions to find that

s− 2

s2 − s− 6
=

1

5(s− 3)
+

4

5(s+ 2)

We can thus write the inverse Laplace Transform as

L−1
[

s− 2

s2 − s− 6

]
=

1

5
L−1

[
1

s− 3

]
+

4

5
L−1

[
1

s+ 2

]
=

1

5
e3t +

4

5
e−2t
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20.1 Inverse Laplace Transform Cont’d

Example. Determine
L−1

[
e−asF (s)

]
We note that this is equal to f(t−a)Ua(t), where Ua(t) = Step(t−a) = h(t−a).

Example. Determine

L−1
[

1− e−2s

s2

]
By linearity, we find that it is equal to

L−1
[

1− e−2s

s2

]
= L−1

[
1

s2

]
− L−1

[
e−2s

s2

]
= t− (t− 2)U2(t)

Example. Determine

L−1
[
e−5s

1

(s+ 4)3

]
We first note that

L−1
[

1

(s+ 4)3

]
=
a

2
t2e−4t

Thus, we get

L−1
[
e−5s

1

(s+ 4)3

]
=

1

2
U5(t)e

−4(t−5)(t− 5)2

Example. Determine

L−1
[
e−3s(2s+ 4)

s2 + 25

]
We note that this is

U3(t)

(
2 cos(5(t− 3)) +

4

5
sin(5(t− 3))

)
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20.2 Differential Equations with the Laplace Transform

To determine the solution, take the Laplace Transform of both sides where

Example. Given that t > 0, y(0) = 1 and y′(0) = −1, solve the initial value
problem of

y′′(t)− y′(t)− 6y = 0

We recall that the first step is to determine the Laplace transform of both sides.
That is, we have

L[y′′] = s2L[y]− sy(0)− y′(0) = s2L[y]− s+ 1

L[y′] = sL[y]− y(0) = sL[y]− 1

L[y] = Y

Substituting, we get s2Y − s+ 1− sY + 1− 6Y = 0. Rearranging this, we get

Y =
s− 2

s2 − s− 6
=

s− 2

(s− 3)(s+ 2)
=

1
5

s− 3
+

4
5

s+ 2

Therefore, we can now apply the Inverse Laplace Transform on Y to get the solution

y(t) =
1

5
e3t +

4

5
e−2t

Example. Given that y(0) = 2 and y′(0) = 1, solve

y′′ + y = sin(2t)

We first take the Laplace Transform of both sides to get

L[y′′] = s2Y − sy(0)− y′(0) = s2Y − 2s− 1

L[y] = Y

L [sin(2t)] =
2

s2 + 4

Solving this, we find that

Y =
2s+ 1

s2 + 1
+

2

(s2 + 1)(s2 + 4)

The second fraction can be separated to obtain

Y =
2s

s2 + 1
+

1

s2 + 1
+

2
3

s2 + 1
+
−2

3

s2 + 4

We now note that

y(t) = 2L−1
[

s

s2 + 1

]
+

5

3
L−1

[
1

s2 + 1

]
− 1

3
L−1

[
2

s2 + 4

]
= 2 cos(t) +

5

3
sin(t)− 1

3
sin(2t)
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21.1 Problems of Inverse Laplace Transform

Remark. Ua(t) = Step(t− a) = h(t− a).

Example. Given that

f(t) =

{
−8, 0 ≤ t ≤ 8

−1, t ≥ 8

and y(0) = 7, solve
y′ + y = f(t)

We note that f(t) = −8 + (−1− (−8))U8(t) = −8 + 7U8(t). Thus, we know that

L[f ] = −8
s + 7e−8s

s . Now, we can apply the Laplace Transform to get

L[y′ + y] = L[y′] + L[y] = sY − y(0) + Y = (s+ 1)Y + 7

L[f ] = sY − y(0) + Y = (s+ 1)Y + 7

(s+ 1)Y = −7− 8

s
+

7e−8s

s

That is, we have

Y = − 7s+ 8

s(s+ 1)
+

7

s(s+ 1)
e−8s

Separating the terms, we get that

y = L−1
[
−8

s
+

1

s+ 1
+

7e−8s

s
− 7e−8s

s+ 1

]
= −8 + e−t + 7U8(t)− 7e−(t−8)U8(t)

=

{
e−t − 8, 0 ≤ t ≤ 8

1 + e−t − e−t+8, t ≥ 8

21.2 Systems of Linear Ordinary Differential Equations

Suppose that we have n unknown functions y1, y2, ..., yn of t and a system of linear
homogeneous equations.

(1)y′1 = a11y1 + ...+ a1nyn

y′2 = a21y1 + ...+ a2nyn

...

y′n = an1y1 + ...+ annyn

Any higher order equation can be written as a system.
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Example. The equation of a spring is given by

y′′ +
k

m
y = 0

or as
y′′ + ω2y = 0

It can be written as a system where y1 = y and y2 = y′1

The system is therefore given as

y′1 = y2 = 0y1 + y2

y′′ = y′2 = −ω2y1 = −ω2y1 + 0y2

Remark. The general theory is the same for higher order equations.

1. (Superposition Principle)

If Y1 =


y1
.
.
.
yn

 and Y2 =


z1
.
.
.
zn

 are solutions of (1), then

a1Y1 + a2Y2

is also a solution. We note that (1) can be written as

Y ′ = AY

where Y =

∣∣∣∣∣∣∣∣∣∣
y1
.
.
.
yn

∣∣∣∣∣∣∣∣∣∣
and A =

∣∣∣∣∣∣
a11 .... a1n
a21 ... a2n
an1 ... ann

∣∣∣∣∣∣
2. If we have n linearly independent solutions Y1, ..., Yn, then

Y = C1Y1 + ...+ CnYn

where Ci are constants is the general solution.

3. We can define the Wronskian as

W [Y1, ..., Yn](t) =
∣∣∣∣Y1∣∣ ∣∣Y2∣∣ ...

∣∣Yn∣∣∣∣
it is equal to zero if and only if Y1, ..., Yn are linearly dependent (otherwise,
W 6= 0 for any t).
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22.1 Systems of Linear Differential Equations Cont’d

Given that x1, x2, ..., xn are unknown functions, then

x′1 = a11x1 + a12x2, ..., a1nxn

x′2 = a21x1 + a22x2, ..., a2nxn

x′n = an1x1 + an2x2, ..., annxn

This is a system of linear ordinary equations which can be written in the matrix
form

X ′ = AX

where

X =

x1x2
xn

 , A =

a11 a12 a1n
a21 a22 a2n
an1 an2 ann


We note that the theory for homogeneous systems is the same for higher order

equations. We have the following properties

1. If X1 and X2 are solutions, then

X = c1X1 + c2X2

is a solution for any constants c1 and c2.

2. For any n solutions X1, X2, ..., Xn, we define the Wronskian as

W [X1, X2, .., Xn](t) =
∣∣[X1

] [
X2

]
...

[
X3

]∣∣
3. If solution X1, X2, ..., Xn are linearly independent (W (t) 6= 0), then the general

solution is
X = C1X1 + C2X2 + ...+ CnXn

Let us determine the method required to solve X ′ = AX. We first look for
solutions in the form X(t) = eλt~v, where ~v is a constant vector. Then X ′ = λeλt~v.
Substituting this into the equation X ′ = AX, we obtain

λeλt~v = Aeλt~v

Solving this, we get
(λI −A)~v = 0

This is the characteristic equation. We note that λ is an eigenvalue, and A is an
eigenvalue. This has a nontrivial solution ~v if and only if

det(λI −A) = 0
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Example. Given that x1(0) = −3 and x2(0) = −1, solve the initial value problem
for the following system of differential equations

x′1 = x1 + 2x2

x′2 = 2x1 + 4x2

We recall that to determine the solution, we write system in matrix form where

X =

[
x1
x2

]
, A =

[
1 2
2 4

]
We now determine the eigenvalues of A to obtain

det(A− λI) =

∣∣∣∣1− λ 2
2 4− λ

∣∣∣∣
= (1− λ)(4− λ)− 2 ∗ 2

= 4− 4λ− λ+ λ2 − 4

= λ2 − 5λ

= λ(λ− 5) = 0

Thus, we obtain λ1 = 0 and λ5 = 5. Now, we find the eigenvectors of A. For λ1 = 0
and λ2 = 5, we get

A− 0I =

[
1 2
2 4

]
A~v = 0

A− 5I =

[
1− 5 2

2 4− 5

]
which gives eigenvectors of

v1 =

[
−2
1

]
v2 =

[
1
2

]
We now write the solutions where

X1 = e0t
[
−2
1

]
=

[
−2
1

]

X2 = e5t
[
1
2

]
The general solution is therefore

X = C1X1 + C2X2

= C1

[
−2
1

]
+ C2e

5t

[
1
2

]
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Now, given the initial conditions, we determine that at t = 0, we have C1 = 1 and
C2 = −1. Therefore, the solution to the initial value problem is therefore

X(t) =

[
−2
1

]
+ e5t

[
−1
−2

]

23 November 9, 2016

23.1 Systems of Linear Homogeneous Ordinary Differential Equa-
tions

Example. Find the general solution of the system

x′1 = 4x1 + x2 + x3

x′2 = x1 + 4x2 + x3

x′3 = x1 + x2 + 4x3

We recall that we first rewrite the system as a matrix of the form X ′ = AX.
That is,

X =

x1x2
x3

 , A =

4 1 1
1 4 1
1 1 4


Now, we find the eigenvalues, such that

|A− λI| =

∣∣∣∣∣∣
4− λ 1 1

1 4− λ 1
1 1 4− λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
4− λ 1 1
−3 + λ 3− λ 0
−3 + λ 0 3− λ

∣∣∣∣∣∣
= (λ− 3)

∣∣∣∣∣∣
4− λ 1 1

1 −1 0
λ− 3 0 −(λ− 3)

∣∣∣∣∣∣
= (λ− 3)2

∣∣∣∣∣∣
4− λ 1 1

1 −1 0
1 0 −1

∣∣∣∣∣∣
= (λ− 3)2

∣∣∣∣∣∣
6− λ 0 0

1 −1 0
1 0 −1

∣∣∣∣∣∣
= (λ− 3)2(6− λ)

∣∣∣∣−1 0
0 −1

∣∣∣∣
= (λ− 3)2(6− λ)
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Thus, λ1 = λ2 = 3 and λ3 = 6. Now, we find eigenvectors for the eigenvalues. For
λ1 = λ2 = 3, we have

A− 3I =

1 1 1
1 1 1
1 1 1


That is, x + y + z = 0 with two free variables y and z. Therefore x = −y − z so
taking v1 : y = 1; z = 0 and v2 : y = 0, z = 1, we have

v1 =

−1
1
0

 , v2 =

−1
0
1


For λ = 6, we have

A− 6I =

−2 1 1
1 −2 1
1 1 −2

 =

1 1 −2
0 1 −1
0 0 0


That is, x+y−2z = 0 and y−z = 0. Therefore x = y = z so v3 : x = 1, y = 1, z = 1
gives

v3 =

1
1
1


The general solution is therefore

X = C1e
3t

−1
1
0

+ C2e
3t

−1
0
1

+ C3e
6t

1
1
1


Thus, this can also be expressed as

x1(t) = −C1e
3t − C2e

3t + C3e
6t

x2(t) = C1e
3t + C3e

6t

x3(t) = C2e
3t + C3e

6t

Remark. We note that eigenvalues are unique, but eigenvectors are not, as we can
have infinitely many eigenvectors that correspond to the equation.

Remark. If a real matrix has a complex eigenvalue λ = a+ bi, then λ2 = λ̄1 = a− bi
is also an eigenvalue. If v1 is an eigenvector associated with λ1, then v̄1 is associated
with λ2 = λ̄1. If we have λ complex and v associated, the real and imaginary parts
of eλtv are solutions.
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Example. Solve the initial value problem given that X(0) =

[
3
5

]
for the equation

X ′ =

[
0 1
−1 0

]
X

We first find the eigenvalues. We note that

|A− λI| =
∣∣∣∣−λ 1
−1 −λ

∣∣∣∣
= λ2 + 1

We note that λ = ±i. Thus, to find the eigenvectors we have

A− iI =

[
−i 1
−1 −i

]
=

[
−i 1
0 0

]
That is, ix+ y = 0. Therefore y = ix so v : x = 1, y = i gives

v =

[
1
i

]
The general solution is therefore

X(t) = eit
[
1
i

]
= e0(cos(t) + i sin(t))

[
1
i

]
=

[
cos(t) i sin(t)
i cos(t) i2 sin(t)

]
=

[
cos(t)
− sin(t)

]
+ i

[
sin(t)
cos(t)

]
= C1

[
cos(t)
− sin(t)

]
+ C2

[
sin(t)
cos(t)

]
Solving for X(0) gives C1 = 3 and C2 = 5. Thus the solution to the initial value
problem is

X(t) = 3

[
cos(t)
− sin(t)

]
+ 5

[
sin(t)
cos(t)

]

24 November 25, 2016

24.1 Sturn-Liouville Problems Cont’d

Example.
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In the case that λ > 0, the characteristic equation becomes r2 + λ = 0. That is,
r = ±

√
λi. The solution is therefore of the form

X(x) = A cos(
√
λx) +B sin(

√
λx)

Substituting X(0) = 0 and X(π) = 0, we get that A = 0 and X(π) = B sin(
√
λπ),

so for B 6= 0, sin(
√
λπ) = 0. This means that

√
λ = n, so λn = n2. Therefore,

Xn(x) = sin(nx)

The eigenvalues are λn = n2, and the eigenfunctions are Xn(x) = sin(nx).
Generally, for

X ′′ = λX = 0

such that X(0) = 0 and X(l) = 0, the eigenvalues are

λn =
(nπ
l

)2
and the eigenfunctions are

Xn(x) = sin
(nπ
l
x
)

When X ′(0) = 0 and X ′(l) = 0, where λ0 = 0 and X0(x) = 1, then we have

λn =
(nπ
l

)2
and

Xn(x) = cos
(nπ
l
x
)

Example. Solve for u(x, t) given as

∂u

∂t
=
∂2u

∂x2

where u(0, t) = 0, u(π, t) = 0, and u(x, 0) = π−x is the initial condition, and t ≥ 0
and 0 < x < π.

We note that this is a Dirichlet Boundary Condition. We separate x and t
assuming that u(x, t) = X(x)T (t). First, we now note that ∂u

∂t = XT ′ and ∂2u
∂x2

=
X ′′T . Now, we have

XT ′ = X ′′T

We can now separate this and write it as

T ′

T
=
X ′′

X
= −λ
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where the first term depends on t, the second depends on x, and λ is a constant.
We now have

X ′′

X
= −λ→ X ′′ + λX = 0

Now, we find the boundary conditions, eigenvalues and eigenfunctions of the Sturn-
Liouville problem. Now,

u(0, t) = X(0)T (t) = 0→ X(0) = 0

u(π, t) = X(π)T (t) = 0→ X(π) = 0

The eigenvalues are λn = n2 and the eigenfunctions are Xn(x) = sin(nx).
Now, we have

T ′n
Tn

= −λn = −n2 → T ′n = −n2Tn

That is, we have
Tn(t) = e−n

2t → un(x, t) = e−n
2t sin(nx)

where the first term is Tn(t) and the second term is Xn(x). Now, applying the
superposition principle, a combination is a solution, so

u(x, t) =
∞∑
n=1

bne
−n2t sin(nx)

We now satisfy the initial condition using the Fourier series. Since u(x, 0) = π − x,
this means that

u(x, 0) =

∞∑
n=1

bne
0 sin(nx)

=
∞∑
n=1

(
2

π

∫ π

0
(π − x) sin(nx)dx

)
sin(nx)

=

∞∑
n=1

(
2

π

[
x− π
n

cos(nx)− sin(nx)

n2
+ C

] ∣∣∣π
0

)
sin(nx)

=
∞∑
n=1

(
2

π
∗ π
n

)
sin(nx)

=
∞∑
n=1

(
2

n

)
sin(nx)

Thus, now that we know bn = 2
π , then

u(x, t) =
∞∑
n=1

2

n
e−n

2t sin(nx)
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25 Separation of Variables Cont’d

Example. Solve the initial boundary value problem of the heat conduction equation
given that 0 < x < π and t > 0 for the equation

5
∂2u

∂x2
=
∂u

∂t

with ∂u
∂x

∣∣∣
x=0

= 0, ∂u
∂x

∣∣∣
x=π

= 0 and u(x, 0) = cos(3x).

First, we assume that u(x, t) = X(x)T (t) to obtain the Sturn-Liouville problem
for X(x). That is, we obtain

∂2u

∂x2
= T (t)X ′′(x)

∂u

∂t
= X(x)T ′(t)

Thus, the original equation becomes

5TX ′′ = XT ′

We now separate the terms to obtain

X ′′

X
=
T ′

5T
= −λ

where λ is a constant. Now, X′′

X = −λ. Furthermoe, we know that ∂u
∂x = X ′T . By

the initial conditions, we know that

∂u

∂x

∣∣∣
x=0

= X ′(0)T (t) = 0→ X ′(0) = 0

∂u

∂x

∣∣∣
x=π

= X ′(π)T (t) = 0→ X ′(π) = 0

The Sturn-Liouville problem for X is therefore

X ′′

X
= −λ

or
X ′′ + λX = 0

with X ′(0) = 0 and X ′(π) = 0. Secondly, we solve the Sturn-Liouville problem. For
λ < 0, we find that the characteristic equation gives

r2 + λ = 0
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implying that r1,2 = ±
√
−λ = ±k where k =

√
−λ > 0. Thus, we have

X(x) = A cosh(kx) +B sinh(kx)

X ′(x) = Ak sinh(kx) +Bk cosh(kx)

Solving for the initial conditions, we find that

X ′(0) = Ak sinh(0) +Bk cosh(0) = 0→ B = 0

X ′(π) = Ak sinh(kπ) = 0→ A = 0

So λ < 0 is not an eigenvalue. In the second case where λ = 0, we find that the
characteristic equation becomes

r2 = 0

thus implying that r1,2 = 0. Thus, we have

X(x) = Ax+B

X ′(x) = A

Solving for the initial conditions, we find that

X ′(0) = A = 0

X ′(π) = A = 0

This implies that B can be any value. Therefore, λ0 = 0 is an eigenvalue and X0 = 1
is an eigenfunction. In the third case that λ > 0, the characteristic equation is

r2 + λ = 0

, implying that r = ±
√
λi. Therefore, we have

X(x) = A cos(
√
λx) +B sin(

√
λx)

X ′(x) = −A
√
λ sin(

√
λx) +B

√
λ cos(

√
λx)

Solving for the initial conditions gives B = 0 and

X ′(π) = −A
√
λ sin(

√
λπ) = 0→

√
λ = n

since A 6= 0, so λn = n2 and so Xn(x) = cos(nx). The third step involves the use of
superposition. That is,

1

5

T ′

T
= −λn

, and so
T ′ = −5λnT

This implies that λ0 = 0 and λn = n2

In the fourth step, we find the coefficients using the initial conditions (Fourier
sine or cosine series ), where sine is for dirichlet and cosine is for neumann.



Differential Equations 65
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26.1

Example. 
5∂

2u
∂x2

= ∂u
∂t , 0 < x < π, t > 0

∂u
∂x

∣∣∣
x=0

= 0, ∂u∂x

∣∣∣
x=π

= 0, t > 0

u(x, 0) = cos(3x), 0 < x < π

The fourth step involves solving for the initial conditions. That is, we have solve
for

u(x, t) = a0 +
∞∑
n=1

an cos(nx)e−5n
2t

using t = 0. We know that at t = 0, u(x, 0) = cos(3x). We now employ the cosine
series for cos(3x). Therefore, we find that

a0 = 0

an =

{
0, n 6= 3

1, n = 3

Therefore, the solution is
u(x, t) = cos(3x)e−45t

Example. Given that u(0, t) = 0, u(π, t) = 0 for t > 0 and u(x, 0) = 0 with
∂u
∂t (x, 0) = 12 sin(3x) for 0 < x < π, solve the initial boundary value problem of

4
∂2u

∂x2
=
∂2u

∂t2
, t > 0, 0 < x < π

We write u(x, t) = X(x)T (t). Thus, the equation becomes

4X ′′T = XT ′′

Rearranging this equation, we obtain

X ′′

X
=
T ′′

4T
= −λ

That is,
X ′′ + λX = 0

T ′′ + 4λT = 0

Now, we note that u(0, t) = X(0)T (t) = 0 and since T (t) 6= 0, then this implies
that X(0) = 0. Similarly, u(π, t) = X(π)T (t) = 0, which implies that X(π) = 0.
Secondly, we now solve the Sturn-Liouville problem where

X ′′ + λX = 0
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where X(0) = 0 and X(π) = 0. We could now consider the cases where λ < 0, λ = 0
and λ > 0. However, we simply use the known answer to obtain

λn = n2
(πn
l

)2
in the case that 0 < x < l, where Xn = sin(nx). Thirdly, we compute Tn(t) by
noting that T ′′n = −4λnTn = 0, which can be rewritten as

T ′′n = −4n2Tn = 0

Finding the characteristic equation to get r2 + 4n2 = 0, we find that r = ±
√

4n2 =
±2ni. That is,

Tn(t) = An cos(2nt) +Bn sin(2nt)

Now by using the superposition principle for both Tn(t) and Xn(x), we get

u(x, t) =

∞∑
n=1

[An cos(2nt) +Bn sin(2nt)] sin(nx)

Lastly, we solve for the initial conditions. Thus, we find that

u(x, 0) =
∞∑
n=1

An sin(nx) = 0

for 0 < x < π. That is, An = 0 for all n = 1, 2, 3, ... Thus,

u(x, t) =

∞∑
n=1

[Bn sin(2nt)] sin(nx)

Solving for the other initial condition, we have

∂u

∂t

∣∣∣
t=0

=

∞∑
n=1

2nBn cos(2nt) sin(nx)

=
∞∑
n=1

2nBn sin(nx) = 12 sin(3x)

This implies that

Bn =

{
0, n 6= 3

2, n = 3

Therefore, the solution is

u(x, t) = 2 sin(6t) sin(3x)



Differential Equations 67

Example. Determine for which c the function u(x, t) = cos(5x) sin(25t) is a solu-
tion of the wave equation

c
∂2u

∂x2
=
∂2u

∂t2

Additionally, determine the boundary conditions given that 0 < x < π, t > 0.

We note that uxx = −25u and utt = −252u. Substituting these values into the
equation, we get

c(−25u) = −252u

This implies that c = 25. To determine the boundary conditions, we note that

∂u

∂x

∣∣∣
x=0

= 0

∂u

∂x

∣∣∣
x=π

= 0

27 Paragraph

In LATEX, paragraphs are causefewf fsdfsdf sd sf s sdf when two line breaks are used.
Single line breaks are ignored. Hence this entire block is one paragraph.

Now this is a new paragraph. If you want to start a new line without a new
paragraph, use two backslashes like this:
Now the next words will be on a new line. As a general rule, use this as
infrequently as possible.

You can bold or italicize text. Try to not do so repeatedly for mechanical tasks
by, e.g. using theorem environments (see Section 30).

28 Math

Inline math is created with dollar signs, like eiπ = −1 or 1
2 · 2 = 1.

Display math is created as follows:

n∑
k=1

k3 =

(
n∑
k=1

k

)2

.

This puts the math on a new line. Remember to properly add punctuation to the
end of your sentences – display math is considered part of the sentence too!

Note that the use of \left( causes the parentheses to be the correct size. With-
out them, get something ugly like

n∑
k=1

k3 = (

n∑
k=1

k)2.
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28.1 Using alignment

Try this:

4∏
k=1

(i− xk) (i+ xk) = P (i) · P (−i)

= (1− b+ d+ i(c− a)) (1− b+ d− i(c− a))

= (a− c)2 + (b− d− 1)2 .

29 Shortcuts

In the beginning of the document we wrote

\newcommand{\half}{\frac{1}{2}}

\newcommand{\cbrt}[1]{\sqrt[3]{#1}}

Now we can use these shortcuts.

1

2
+

1

2
= 1 and

3
√

8 = 2.

30 Theorems and Proofs

Let us use the theorem environments we had in the beginning.

Definition. Let R denote the set of real numbers.

Notice how this makes the source code READABLE.

Theorem (Vasc’s Inequality). For any a, b, c we have the inequality(
a2 + b2 + c2

)2 ≥ 3
(
a3b+ b3c+ c3a

)
.

For the proof of Theorem 30, we need the following lemma.

Lemma. We have (x+ y + z)2 ≥ 3(xy + yz + zx) for any x, y, z ∈ R.

Proof. This can be rewritten as

1

2

(
(x− y)2 + (y − z)2 + (z − x)2

)
≥ 0

which is obvious.

Proof of Theorem 30. In the lemma, put x = a2 − ab + bc, y = b2 − bc + ca, z =
c2 − ca+ ab.

Remark. In section 30, equality holds if a : b : c = cos2 2π
7 : cos2 4π

7 : cos2 6π
7 . This

unusual equality case makes the theorem difficult to prove.
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31 Referencing

The above examples are the simplest cases. You can get much fancier: check out
the Wikibooks.

32 Numbered and Bulleted Lists

Here is a numbered list.

1. The environment name is “enumerate”.

2. You can nest enumerates.

(a) Subitem

(b) Another subitem

21
2 . You can also customize any particular label.

3. But the labels continue onwards afterwards.

You can also create a bulleted list.

• The syntax is the same as “enumerate”.

• However, we use “itemize” instead.

http://en.wikibooks.org/wiki/LaTeX/Labels_and_Cross-referencing
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